Перевод: со всех языков на английский

с английского на все языки

множество допустимых решений

  • 1 множество допустимых решений

    Универсальный русско-английский словарь > множество допустимых решений

  • 2 Множество допустимых решений

    Русско-английский словарь по прикладной математике и механике > Множество допустимых решений

  • 3 множество допустимых решений

    Русско-английский научно-технический словарь Масловского > множество допустимых решений

  • 4 область допустимых решений

    1. opportunity set
    2. feasible space
    3. feasible set
    4. feasible region
    5. constraint region

     

    область допустимых решений

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    область допустимых решений
    допустимое множество
    множество возможностей
    множество допустимых решений
    область допустимых значений
    область свободы решений

    Понятие математического программирования, область (см. рис. к статье Линейное программирование или рис. к статье Нелинейное программирование), в пределах которой осуществляется выбор решений. В принципе она может быть определена разными способами, вплоть до прямого перечисления входящих в нее элементов. В экономических задачах эта область ограничена (отсюда и происходит термин «ограничения«) условиями задачи, наличными ресурсами. Эти ограничения могут быть более жесткими и менее жесткими, соответственно область свободы — более или менее широкой. Она является нулевой, если определяющие ее ограничения составляют несовместную систему уравнений. В линейном программировании область допустимых решений (допустимый многогранник) всегда выпукла и всегда находится в неотрицательном подпространстве многомерного (n-мерного) векторного пространства решений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > область допустимых решений

  • 5 множество

    1. set

     

    множество
    набор
    комплект


    [ http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4318]

    множество
    Одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое целое». (Так определял множество основатель теории множеств, известный немецкий математик Георг Кантор. Правда, уже в начале XX в. стало ясно, что определение Кантора нельзя считать достаточно строгим, так как оно приводит к различным логическим противоречиям. Широко распространено убеждение, что «М.» — понятие, поясняемое только на примерах. Такая странная для математики ситуация объясняется отчасти тем, что все попытки определить термин «М.» приводят, по существу, к замене его другими, столь же неопределенными понятиями). Примеры множеств: М. действительных чисел, М. лошадей в табуне, М. планов, М. функций, М. переменных задачи. Все М., кроме пустого М., состоят из элементов. Например, каждое действительное число есть один из элементов М. действительных чисел. То, что элемент a принадлежит множеству A, обозначают с помощью специального знака a ?A. Это читается так: «a принадлежит множеству А в качестве элемента». М. можно задать прямым перечислением элементов. Пусть А состоит из элементов a1, a2, a3. Это записывается так: A = {a1, a2, a3}. Если непосредственное перечисление элементов М. невозможно (например, когда М. A состоит из бесконечного числа элементов), его определяют характеристическим высказыванием, т.е. высказыванием, истинным только для элементов данного М. В таком случае употребляется запись типа: A = {x|P(x) = И}, которая читается так: «М. A — есть М., состоящее из элементов x таких, что P(x) — истинно». Множество М всех планов x, удовлетворяющих условию, что они лучше (больше), чем план x0, может быть задано с помощью высказывания: М {x|(x>x0) = И} или сокращенно: M = {x|(x>x0)}. Коротко остановимся на определениях и свойствах действий над множествами. Прежде всего, можно рассмотреть два М. — A и B, обладающих следующим свойством: все элементы М. A принадлежат и М. B. Множество A есть, таким образом, подмножество B. Это обозначается так: A ? B. Предположим теперь, что даны произвольные М. A и B. Тогда из элементов этих М. можно сконструировать несколько других: Во-первых, М. элементов, принадлежащих либо A, либо B; такая операция над М. обозначается через A ? B и называется объединением; ясно, например, что если A? B, то A ? B = B; кроме того, A? B = B? A это свойство называется коммутативностью; (A? B) ? C = A ? (B? C) - это свойство — ассоциативность (возможность произвольного разбиения на группы); Во-вторых, можно рассмотреть также М. элементов, принадлежащих и A, и B одновременно; такая операция называется пересечением и обозначается через ?. Предположим, что A? B, тогда A ? B = A. Для того, чтобы пересечение двух М. имело смысл, даже если у них нет общих элементов, вводится понятие пустого М., т.е. М. без элементов. Его обозначают ?. Легко увидеть, что A ? ? = A; A ? ? = ? ; Так же, как и объединение, операция ? — ассоциативна и коммутативна. Объединение множеств называют иногда их суммой, а пересечение их — произведением. В третьих, можно выделить также подмножество элементов множества A, не принадлежащих B. Это действие называется дополнением B до A или разностью A\B. Так же как и в случае обычной разности, это действие некоммутативно. В евклидовом n-мерном пространстве М., содержащее все свои граничные точки, — замкнутое; М., для которого существует (n-мерный) шар, целиком его содержащий, — ограниченное; ограниченное и замкнутое М. называется компактным; о выпуклом М. см. Выпуклость, вогнутость. В разных контекстах вместо слова множество часто употребляют: область (напр. Область допустимых решений) или пространство (напр. Простртанство производственных возможностей). См. также Венна диаграммы, Декартово произведение множеств, Нечеткое, размытое множество.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > множество

  • 6 множество достижимости

    1. feasible set

     

    множество достижимости
    1. Множество всех таких состояний, в которые можно привести динамическую систему при помощи допустимого управления из начальной точки (начального состояния) за заданный промежуток времени. 2. То же, что область допустимых решений
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > множество достижимости

  • 7 вершина допустимого многогранника

    1. corner point

     

    вершина допустимого многогранника
    (области допустимых решений в задачах линейного программирования) - точка пересечения линейных ограничений (см. рис.Л.1. к статье Линейное программирование). Поскольку множество допустимых решений в задаче линейного программирования всегда выпукло, вершинная точка является крайней точкой множества и она может быть принята за допустимое базисное решение задачи.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > вершина допустимого многогранника

  • 8 многогранник

    1. polihedron

     

    многогранник
    Выпуклое ограниченное множество точек, удовлетворяющих одновременно конечному числу неравенств типа: a11x1 + … + a1nxn ? b1 ……………….. am1x1 + … + amnxn ? bm или в матричной записи M = {x?En | Ax ? B}. М. имеет конечное число крайних точек, называемых его вершинами, экстремальными точками (это такие точки, которые не могут лежать внутри отрезка, соединяющего две точки выпуклого множества, а могут быть только одной из концевых точек этого отрезка). Понятие М. используется в геометрической интерпретации задач линейного программирования: множество допустимых решений задачи является выпуклым М., базисное решение или опорный план — одной из его вершин. (См. Вершина допустимого многогранника).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > многогранник

  • 9 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 10 ограничения модели

    1. model constraints

     

    ограничения модели
    Запись условий, в которых действительны расчеты, использующие эту модель. Обычно представляя собою систему уравнений и неравенств, они в совокупности определяют область допустимых решений (допустимое множество). Совместность системы ограничений — обязательное условие разрешимости модели: в случае несовместности этой системы допустимое множество является пустым. На практике в качестве О.м. часто выступают ресурсы сырья и материалов, капиталовложения, возможные варианты расширения предприятий, потребности в готовой продукции и т.п. Как правило, если снять ограничения задачи, то показатели ее решения окажутся лучше, чем при решении, соответствующем реальным условиям. И, наоборот, если сделать ограничения более жесткими и тем самым сократить возможности выбора вариантов, то решение окажется, как правило, хуже. В первом случае оно будет оптимистичным, во втором — пессимистичным. Это, между прочим, открывает возможность приблизительного, прикидочного решения некоторых оптимизационных задач: меняя ограничения, можно оценить диапазон значений, в пределах которых находятся решения задачи. На рис.O.3 а, б показаны некоторые важнейшие типы О.м., определяющих область допустимых решений в задачах математического программирования. (Для наглядности — в 2-мерном пространстве, в его первом квадранте). Ограничения I, II, Y — линейные, III, IY, YI — нелинейные. Линейными ограничениями являются на рис. O.3а также оси координат; иначе говоря, в область допустимых решений здесь входят все точки, удовлетворяющие I и II, но кроме того, отвечающие условию  x1  ? 0, x2 ? 0 (см. Неотрицательность значений). Кривая IY — ограничение переменной x2 сверху, YI — ограничение той же переменной снизу. Запись типа  a? x ?b  называется двусторонним ограничением. Все показанные ограничения относятся к типу ограничений-неравенств. Что касается ограничений-равенств, то они определяют область допустимых решений как точку (в одномерном пространстве), как линию (в двумерном пространстве), как гиперповерхность (в многомерном пространстве). Экономико-математические ограничения разделяются также на детерминированные (см. рис. O.3 а, б) и стохастические (см. рис.O.3 в). В последнем случае серия кривых АВС отображает возможные случайные реализации стохастического ограничения. В задачах математического программирования системы ограничений (т.е. выражающих их уравнений и неравенств) удобно записывать в векторной форме: f (x) = b или f (x) ? b и т.п., где x — вектор-столбец управляющих переменных xi (i = 1, 2, …, n), b — вектор-столбец, компонентами которого являются функции ограничений bi (примеры см. в статье Математическое программирование). В моделях планирования ограничения снизу имеют смысл плановых заданий (которые допустимо перевыполнять), ограничения сверху — смысл «квот» на выпуск тех или иных видов продукции. При совпадении ограничений сверху и снизу экономический субъект полностью лишается свободы принятия решений в данной области. В системах моделей различаются общесистемные (или глобальные) О.м., имеющие силу для всей моделируемой экономической системы, и локальные ограничения для моделей отдельных подсистем. Несовместность локальных ограничений с общесистемными приводит к неразрешимости системы моделей.   Рис.О.3  Линейные и нелинейные ограничения
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > ограничения модели

  • 11 допустимый план

    1. feasible plan

     

    допустимый план
    допустимое решение

    Такой вариант плана, который удовлетворяет всем заданным ограничениям задачи, но не обязательно оптимальный. Например, на рис.Л.1 (к статье Линейное программирование) - это любая точка в пределах области допустимых решений. Поскольку план выражается в виде вектора (совокупности значений переменных модели), то часто вместо термина «Д.п.» говорят «допустимый вектор». Совокупность всех допустимых векторов образует множество возможностей, или допустимое множество, или область допустимых решений.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > допустимый план

  • 12 альтернатива

    1. alternative strategy
    2. alternative decision
    3. alternative

     

    альтернатива

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    альтернатива
    альтернативная стратегия
    Понятие исследования операций, теории игр, теории решений, — возможный вариант решения задачи. Обычно под термином «А.», понимается как само решение, так и результат (исход) его реализации. Соответственно, множество альтернатив совпадает с множеством конечных исходов, результатов (изоморфно ему). [1] Такое отождествление в большинстве случаев оправданно, однако возможны ситуации, когда эти понятия необходимо различать (например, в ситуациях риска и неопределенности). Те задачи исследования операций, которые состоят в выборе одной из существующих (известных) А., называются задачами оценки, а задачи, которые состоят в разработке новых стратегий (если, например, существующие оказываются недостаточными для достижения цели), называются задачами разработки. В ряде случаев, например, в играх (см. Теория игр), возникает необходимость выяснения альтернативных контрстратегий, т.е. возможных действий других участников игры или действий «природы«, способных отрицательно повлиять на результаты решения задачи, несмотря на удачный выбор стратегии. Постановка задачи исследования операций может считаться законченной лишь тогда, когда определен список альтернатив и способ (критерий) выбора наилучшей из них для достижения заданной цели. Для выбора необходимо упорядочение альтернатив. — их размещение в определенном порядке, как правило, в порядке возрастания полезности ожидаемых или фактических конечных исходов (хотя возможны и иные принципы упорядочения). Используется,например, такая запись: если альтернатива x предпочитается или равноценна альтернативе y, то они составляют упорядоченную пару (x, y). Важные виды альтернатив: Альтернатива детерминированная (Determined, determinative alternative) - решение, о котором известно, что оно безусловно приведет к некоторому конкретному результату (исходу). Альтернативы допустимые ( Feasible alternatives) - отобранные в процессе принятия решения, о которых известно, что они осуществимы и (по предварительному прогнозу) их возможный результат желателен, т.е. не противоречит намерениям принимающего решение. Множество допустимых А. рассматривается в задаче принятия любого решения (см. также Область допустимых решений). Альтернатива стохастическая (Stochastic alternative) - решение, выбранное случайным образом из множества возможных (в зависимости, например, от склонности решающего к риску), или решение, исходы которого носят случайный характер, либо и то, и другое. Во втором из указанных случаев стохастическое решение удается сводить к детерминированному, если, например, результатом считать средний из возможных результатов принятия данной А. См. также Бинарное отношение, Доминирование альтернатив, Предпочтение, Ранжирование экономических величин. [1] В обыденной речи слово “альтернатива” понимается как необходимость выбора между взаимоисключающими возможностями (вариантами решений).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > альтернатива

См. также в других словарях:

  • Множество допустимых решений — [feasible set] см. Область допустимых решений …   Экономико-математический словарь

  • Множество Допустимых Решений — область, в пределах которой может быть произведен выбор решений, ограниченный поставленными целями и имеющимися ресурсами. Словарь бизнес терминов. Академик.ру. 2001 …   Словарь бизнес-терминов

  • МНОЖЕСТВО ДОПУСТИМЫХ РЕШЕНИЙ — область, в пределах которой осуществляется выбор решений. М.д.р. ограничено условиями задачи, наличными ресурсами …   Большой экономический словарь

  • область допустимых решений — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] область допустимых решений допустимое множество множество возможностей множество допустимых решений область допустимых значений область свободы решений Понятие математического …   Справочник технического переводчика

  • Область допустимых решений — [feasible set, feasible space, opportunity set] (или область свободы решений, допустимых значений; допустимое множество, множество возможностей, множество допустимых решений) понятие математического программирования, область (см. рис. к статье… …   Экономико-математический словарь

  • множество — набор комплект — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index d=4318] множество Одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое… …   Справочник технического переводчика

  • Множество — [set] одно из основных понятий современной математики, «произвольная совокупность определенных и различимых объектов, объединенных мысленно в единое целое». (Так определял множество основатель теории множеств, известный немецкий… …   Экономико-математический словарь

  • Множество достижимости — [feasible set] 1. Множество всех таких состояний, в которые можно привести динамическую систему при помощи допустимого управления из начальной точки (начального состояния) за заданный промежуток времени. 2. То же, что область допустимых решений …   Экономико-математический словарь

  • множество достижимости — 1. Множество всех таких состояний, в которые можно привести динамическую систему при помощи допустимого управления из начальной точки (начального состояния) за заданный промежуток времени. 2. То же, что область допустимых решений [http://slovar… …   Справочник технического переводчика

  • Допустимое множество — [opportunity set, feasible set] см. Допустимый план, Область допустимых решений …   Экономико-математический словарь

  • ИССЛЕДОВАНИЕ ОПЕРАЦИЙ — построение, разработка и приложения математич. моделей принятия оптимальных решений. Содержанием теоретич. аспекта И. о. являются анализ и решение математич. задач выбора в заданном множестве допустимых решений Xэлемента, удовлетворяющего тем или …   Математическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»